Replicatively senescent cells are arrested in G1 and G2 phases
نویسندگان
چکیده
Most human somatic cells do not divide indefinitely but enter a terminal growth arrest termed replicative senescence. Replicatively senescent cells are generally believed to arrest in G1 or G0 stage of the cell cycle. While doing cell cycle analysis on three different lines of normal human fibroblasts we observed that 36-60% of the replicatively senescent cells had 4N DNA content. Only up to 5% of senescent cells had more than one nucleus ruling out the possibility that the 4N cell population were G1-arrested bi-nucleated cells. Furthermore, it is unlikely that the 4N cells are tetraploids, because actively dividing pre-senescent cultures lacked the 8N tetraploid G2 population. Collectively these results suggest that the 4N population consists of G2 arrested cells. The notion that a large fraction of senescent cell population is arrested in G2 is important for understanding the biology of replicative senescence.
منابع مشابه
An Investigation on the Composition of Biotite from Mashhad Granitoids, NE Iran
Compositions of biotite from three different rock types of Mashhad granitoids, i.e., granodiorite, monzogranite and leucogranite in NE of Iran have been documented by electron microprobe and wet chemistry for Fe3+ and Fe2+. Mashhad granitoids have been geochronologically and petrologically grouped into G1 and G2 phases. Microprobe data show that the total Fe contents in biotite from G2 leucogra...
متن کاملEffects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells.
Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombina...
متن کاملPii: S0962-8924(00)01765-7
0962-8924/00/$ – see front matter © 2000 Elsevier Science Ltd. All rights reserved. 245 PII: S0962-8924(00)01765-7 The development of plants, compared with that of animals, is influenced much more by the environment in which they grow, suggesting that plants have evolved mechanisms that relay environmental signals to control cell division and ultimately plant growth. Most of the divisional acti...
متن کاملIsolation of Live Premature Senescent Cells Using FUCCI Technology
Cellular senescence plays an important role in diverse biological processes such as tumorigenesis and organismal aging. However, lack of methods to specifically identify and isolate live senescent cells hampers the precise understanding of the molecular mechanisms regulating cellular senescence. Here, we report that utilization of fluorescent ubiquitination-based cell cycle indicator (FUCCI) te...
متن کاملCyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals.
Stem cells must proliferate while maintaining 'stemness'; however, much remains to be learned about how factors that control the division of stem cells influence their identity. Multiple stem cell types display cell cycles with short G1 phases, thought to minimize susceptibility to differentiation factors. Drosophila female germline stem cells (GSCs) have short G1 and long G2 phases, and diet-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2012